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Abstract

We develop an objective measure of college quality and decompose this effect into its

constituent parts. We study the engineering college market in a Indian state that uses a

centralized admissions process to match students to programs. Notably, this state man-

dates a uniform entrance examination and standardized tests for all students statewide each

semester, allowing for a unique opportunity to compare cross-college performance. Using a

regression discontinuity design, we estimate program-level college outcomes in the neighbor-

hood of program admission cutoffs. We find that marginally admitted students who clear a

cutoff experience an increase in peer quality, and a decrease in relative percentile rank upon

admission. Over time, these marginally admitted students demonstrate, on average, improve-

ments in academic performance and an increased likelihood of graduation. To objectively

gauge college quality, we construct individual program value-added measures. Subsequently,

we decompose program value-added into distinct components: college quality, peer quality,

and relative rank effects. A unique feature of our study setting is that affirmative action

policies generate multiple cutoffs within a single program. We leverage this setting to delin-

eate relative rank effects and isolate this aspect from the value-added originating from college

inputs and peer quality. Understanding the contributions of college inputs, peer quality, and

relative positions within the classroom to overall value-added is crucial for both academic

researchers and policymakers. Such insights are essential for informed decision-making re-

garding investment strategies and resource allocation within the higher education sector.
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Measuring College Quality and its Determinants

1 Introduction

Access to a selective college can expose individuals to high-quality college inputs, high-achieving

peers, and better teachers. However, the literature evaluating the impact of selective colleges on

marginally admitted students report mixed impacts on academic achievement (Saavedra, 2008;

Rubinstein and Sekhri, 2013; Bagde et al., 2016; Francis-Tan and Tannuri-Pianto, 2018; Sekhri,

2020; Dasgupta et al., 2022).1 A leading explanation for the mixed results is the extent of the

trade-off between positive effects of higher-ability peer environments (Jain and Kapoor, 2015; Feld

and Zölitz, 2017) and negative impacts resulting from marginally admitted students ranking low

among peers (Elsner and Isphording, 2017, 2018; Murphy and Weinhardt, 2020; Dasgupta et al.,

2022; Fabregas, 2023).2 As such, measuring the academic returns to college quality, and decom-

posing the determinants of college “value-add” is essential.

The objective of our paper is twofold: (i) to determine the effect of going to a preferred pro-

gram on marginally admitted students, and (ii) to decompose the effect into peer quality, college

inputs, and relative rank effects. There is a large literature examining the benefits of having

high-performing peers (Sacerdote, 2001; Whitmore, 2005; Carrell et al., 2009; Black et al., 2013;

Booij et al., 2017), and the effect of students’ ordinal rank within their classroom (Bertoni et al.,

2018; Murphy and Weinhardt, 2020; Elsner et al., 2021; Delaney and Devereux, 2022; Denning

et al., 2023). The uniqueness of our setting, with multiple admissions cutoffs within a program, al-

lows us to separate college “value-add” into effects of relative rank, peer quality, and college inputs.

We access administrative data on all 60,000 applicants appearing for engineering colleges’ common

entrance test in a Indian state. The common entrance test data gives us students’ entrance exam

scores, 12th-grade state-standardized exam score, and several observable characteristics such as

caste, gender, and age. Students are assigned a state rank using the composite score of the 12th-

grade exam scores and the common entrance exam score. The state rank is revealed to students.

Once state ranks are published, students are asked to submit rank-ordered preferences for majors

(such as computer science, electronics & communication, and information science engineering) and

colleges affiliated to the state university.3 The state admits students through multiple types of seat

reservations for affirmative action based on caste (SC, ST, BC-A, BC-B, BC-C, BC-D, BC-E) and

gender (M, F). The declared caste and gender category is used to auto-determine the affirmative

1Wage returns for marginally admitted students at a selective or elite college is positive (Zimmerman, 2014;
Kirkeboen et al., 2016; Sekhri, 2020)

2Research has looked at the negative impact of ranking low on non-cognitive outcomes such as major choice,
risk-taking, self-belief, competitiveness, over-confidence, and Big Five personality traits.

3We refer to a college and major combination as a program in this article. For example, Computer Science
Engineering (CSE) major in College A is a program).
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action category of a student. Those not seeking and also seeking admission under reservation cate-

gories compete on merit for the seats available in the open category (OC) or general merit category.

A deferred acceptance mechanism, with serial dictatorship, is used to match students to programs

in the order of their ranks (Baswana et al., 2019; Gale and Shapley, 1962). In our setting, students

are matched to programs in three rounds. Post each round of matching, students are informed

of their allocation and they are asked to either accept their allocation or indicate their desire to

wait for allocation in the next round. The process is repeated for round 2, and in the final round,

students either accept their allocation or opt out of the admission system. The uniqueness of

this admission process, combined with seat reservations, results in 16 cutoffs (8 caste categories

x 2 gender categories) for each program. In our data, we observe the program allocation for each

round and the reservation category under which the seat is allotted.

The state university has 202 affiliated colleges admitting students through the common entrance

exam. The university sets the curriculum to be taught in 8 semesters, conducts state-standardized

exams at the end of each semester, and grants degrees at the end of the 4-year program. Of the 202

colleges, 192 are private, and 10 are government colleges. We have access to the eight semesters’

subject-wise scores, and pass-fail status in each subject for all students.

In our analysis, we first identify the aggregate impact of gaining admission into a preferred pro-

gram for marginally admitted students using a regression discontinuity design. We estimate the

Local Average Treatment Effect (LATE) value-added for each program. Then, guided by the lit-

erature on estimating value-added (Chetty et al., 2014; Koedel and Rockoff, 2015), we determine

the OLS value-add for each program to compare to the LATE value-added. Finally, we leverage

the multiple cutoffs within a program to uniquely estimate a model that decomposes the value

added into the effect of college inputs, peer quality, and relative rank.

Several interesting findings emerge from our pooled regression results. As expected, marginally

admitted students who clear a cutoff experience a 0.4 standard deviations (σ) increase in peer

quality and a decrease in relative percentile rank by 15 percentage points. Turning to academic

outcomes, barely getting admitted to a preferred program increases the standardized semester

exam total score by 0.117 σ and increases the probability of graduation on time by 3 percentage

points. To put this in the context of the literature’s mixed findings, our positive results suggest

that, on average, the positive impact stemming from college inputs and peer quality is more than

the potential negative impact of low-relative ranking.

Moving from pooled regression results, we estimate program-specific LATEs. To draw insights

from program-specific value-adds, we rank all programs using the cutoff score from the common
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entrance test. For example, programs that had the highest cutoff score will be ranked as the most

desirable program or are more preferred by students. Looking at program-specific LATEs based

on desirability showcases two patterns: (i) 9 out of the top 25 desirable programs do not have

positive value-add, whereas 7 out of the bottom 25 desirable programs do not have a positive

value add; (ii) only one of top 25 programs has a value-add of 0.4 σ, whereas 11 of the bottom 25

programs have a value-add of more than 0.5 σ.

Compared to the traditional RDD setting where one cutoff per program is used to estimate LATEs,

we use up to 16 cutoffs per program and hence up to 16 LATEs to determine the weighted-average

LATE of each program. Therefore, our program-specific LATE estimates should be more compa-

rable to OLS estimates. To investigate this further, we determine program-specific value-add using

the OLS specification that controls for observables and ability using past exam scores. In general,

we observe that OLS and LATE value-add estimates differ considerably. While numerous very

desirable programs have a negative LATE estimate, their OLS estimates are large positives. On

the other hand, some least desirable programs with high LATE estimates have low OLS estimates.

We infer that OLS value-added estimates are often biased by the quality of the incoming students

and may not accurately reflect the value-added by the program itself.

Finally, we turn to decomposing the program value-add into relative rank effects, peer effects, and

college quality. Now, consider a program with two admission cutoffs, one for the students targeted

by affirmative action (AA) policies, and another for students getting admitted under open compe-

titions (OC). We separately identify the expected payoff to clearing an OC cutoff and AA cutoff

by taking the difference in outcomes of students around the cutoffs using RDD. Taking the second

difference of the expected payoffs of OC and AA gives us relative rank value-add if we assume that

the college inputs and peer quality experienced by OC and AA “cutoff-misers” is the same. Since

we have already estimated the value-add of each program (program RD VA), we difference out

the relative rank value-add (relative rank VA) from program RD VA to determine the combined

contribution of college inputs and peer quality, which we refer to as the quality value-add (quality

VA).4

As such, we can determine program RD VA, relative rank VA, and quality VA. We plot the dis-

tributions of all three measures for all programs, and we make the following three observations:

(i) we find that program RD VA is made up of two potentially opposing effects (relative rank vs

college quality) as one might theorize; (ii) the modal value of the relative rank VA distribution is

negative suggesting that on average, the marginally admitted student experiences a negative effect

from being the “lowest scoring” student relative to their peers; (iii) the quality VA distribution

4We assume that academic outcome of a student is an additive separable function of college inputs, peer quality,
relative percentile rank, their ability, and idiosyncratic variation.
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has a positive modal value suggesting that once the relative rank VA is separated from overall

program RD VA, college inputs and exposure to a higher peer quality has a positive effect on the

marginally admitted student.

We make two important contributions. Our first contribution is to the literature studying the

effects of going to a selective college. We extend the literature by developing an objective mea-

sure of college quality (program value-add) and decomposing this effect into its constituent parts.

Understanding the contribution of college inputs, peer quality, and relative position within the

classroom to overall value-add is crucial for both academic researchers and policymakers. Such

insights are essential to policymakers for informed decision-making regarding investment strategies

and resource allocation within the high-education sector.

Methodologically, we speak to the literature on Regression Discontinuity Designs with multiple cut-

offs widely used in political science and economics of education (Cattaneo et al., 2021; Bertanha,

2020; Cattaneo et al., 2021). Our setting enables us to exploit the within-classroom variation

around multiple cutoff thresholds that exist in a single classroom (Kumar, 2023). This is rare in

the school and college quality literature. We advance this nascent literature by developing a con-

ceptual framework to showcase how to fully exploit all the information available in a multi-cutoff

RD setup in the economics of education.

The rest of the paper is organized as follows. The data, empirical strategy, validity of RDD, and

findings from pooled regression results are discussed in Section 2. The conceptual framework in

Section 3 illustrates our approach to identifying the contribution of relative rank, college inputs,

and peer quality. We present our insights from program-level RD value-adds and OLS value-adds

in Section 4. In Section 5, we plot and interpret the distributions of program RD VA, relative

rank VA, and quality VA. We conclude in Section 6.

2 Data and Empirical Strategy

2.1 Overview of Data Sources

We rely on four primary sources of administrative data in this paper. First, we have access

to student-level data from a common state-level entrance examination. This dataset contains

students’ entrance examination marks and their 12th grade marks. It also includes various demo-

graphic characteristics like their caste, gender, and affirmative action categories. This student-level

dataset allows us to construct admission cutoffs for each program. Since we also have access to

the seat category under which a student is admitted to a program, we can construct multiple ad-

mission cutoffs for a given program, corresponding to each seat category. Second, we have access
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to data from the centralized admissions mechanism that is linked to the student-level entrance

exam data. This dataset contains the rank-ordered list of program preferences for each student

and information on student-program matches or allocations. We are also able to see if students

actually enroll in their allotted programs or not, i.e. their “take-up” of the program allocation.

Third, we have access to students’ semester examination scores for all colleges affiliated with the

state’s technical university. This accounts for 80% of all colleges in the centralized admissions

process.

By linking these semester exam scores to students’ entrance exam data, we are able to construct a

complete dataset for each student that traces their academic outcomes from high school, through

college, until graduation. All colleges affiliated with the state technical university administer the

same semester exams within a program, allowing us to construct program value-added metrics

that are comparable across colleges within a major. For the remainder of this paper, we focus on

the computer science engineering (CSE) major, but our approach can easily be duplicated to any

other major in the system. Finally, we also have access to college-level inputs (number of hostels,

libraries, laboratories, playgrounds, etc.) from the All India Survey of Higher Education (AISHE)

dataset that we have linked to each college in the state technical university.

2.2 Empirical Strategy

We use a regression discontinuity (RD) approach that examines the neighborhood of admission

cutoffs to a given program (college + major combination). This allows us to compare the outcomes

of students who are barely admitted to a program to counterfactual outcomes had they missed

the admissions cutoff and, therefore, been denied admission into their “preferred program”. In

all regression specifications that follow, i indexes a student and j a program, respectively. k ∈
{OC,AA} indicates the type of cutoff a student faces, i.e., the seat category they were admitted

under: Affirmative Action (AA) or Open Category (OC). Dij is an indicator that takes the value

1 if a student i is admitted to classroom j. Xij indicates the value of the running variable for a

student, i.e. their distance from the cutoff score. αj is a program waitlist fixed effect and αk is a

seat category fixed effect. βD is the slope coefficient of interest (VAM or change in outcome upon

clearing an admission cutoff).
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2.3 Validating the RD Approach

2.3.1 First Stage: Take-up of Allotment

We first estimate how marginally clearing a cutoff affects enrollment in the college using the

following specification:

yij = αj + βDDij + βXXij + βDXDijXij + ϵij

Figure 1: Probability of Enrollment. The horizontal axis shows the running variable Xij,
which denotes the distance between a student’s marks on the entrance exam and the marks of the
last student admitted to a program. The vertical axis shows the probability of enrollment conditional
on receiving a program allocation in the centralized admissions mechanism.

In Figure 1, we see that upon clearing a cutoff and receiving a program allocation, the probability

of enrolling in the allotted program increases from 0 to 0.88. By construction, the left side of the

graph is at zero. On the right, since certain students may choose to leave the state, not go to any

college, or join a private college, the probability does not jump all the way to 1. Table A1 shows

the RD coefficients for the first stage probability of enrollment.

2.3.2 Covariate Smoothness

The specification used to check for smoothness of covariates at the threshold is as follows.

ykij = αj + αk + βDDij + βXXij + βDXDijXij + ϵij

For the purpose of the graphs, first, we regress the raw outcome of interest on program waitlist

and seat category fixed effects, i.e. αj and αk respectively. It is necessary to include seat category
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fixed effects because, owing to affirmative action, we expect covariates like high school marks or

demographics like students’ age to be continuous within seat categories. Second, we obtain the

residuals η̂ij from the first regression and regress those on the admission indicator Dij, a polyno-

mial in the running variable Xij and an interaction between Dij and Xij. βD is the coefficient

reported on the plots.

Figure 2: Covariate Smoothness. The horizontal axis shows the running variable Xij, which
denotes the distance between a student’s marks on the entrance exam and the marks of the last
student admitted to a program. The vertical axes show the residualized 12th grade marks, student
age, and out-of-pocket tuition fee from left to right.

In Figure 2, we establish that students immediately to the left and right of a program cutoff are

comparable based on their ability as measured by their high school graduation scores as well as

key demographics like their age and the out-of-pocket tuition fee they would pay at their allotted

programs. The RD coefficients are economically and statistically indistinguishable from zero, as

expected. Table A2 shows the RD coefficients for the smoothness of covariates at the admission

cutoffs.

2.3.3 McCrary Density Tests

Using local polynomial regressions, in Figure 3, we see the density of students to the left and

right of cutoffs is similar, i.e. students cannot endogenously choose which side of a cutoff they

land on. We examine different bandwidths around the cutoff, and the results fail to show any

sharp discontinuities in the density, suggesting manipulation of the running variable (or sorting)

is unlikely.
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Figure 3: McCrary Density Tests using local polynomial regression. The horizontal
axes in all plots show the bandwidth around the RD admission cutoff. The vertical axes show the
density of the distribution of students around the cutoff. The first, second, and third columns show
a bandwidth of ± 40, ± 20, and ± 3 respectively. The top panel shows the density histogram of
students on either side of an admissions cutoff. The bottom panel shows the results of a local
polynomial regression representing the mass at various points of the density distribution.

2.4 Pooled Regression Results

In this section, we present the pooled regression results, aggregating over all student types and

program cutoffs. The objective is to determine the effect of clearing an admission cutoff and

gaining admission into a preferred program. We examine intermediate outcomes like peer quality

and relative percentile rank and, thereafter, academic outcomes of students during college. We

estimate the following regression specification.

yij = αj + βDDij + βXXij + βDXDijXij + ϵij

2.4.1 Peer Quality and Relative Rank

In Figure 4 (top panel), we do not include seat category fixed effects because our objective here

is to estimate the aggregate change in outcomes upon gaining admission into a classroom pooling

across all seat categories. Yet, our results are almost identical to including seat category fixed

effects as well (bottom panel of Figure 4). In Figure 4, we see that upon gaining admission to a

preferred program, a student is exposed to a higher peer quality as measured by the average of all

students’ entrance exam marks excluding that individual student, i.e. leave-own-out peer quality.
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Figure 4: Leave-own-out Peer Quality and Relative Rank. The horizontal axis shows the
running variable Xij, which denotes the distance between a student’s marks on the entrance exam
and the marks of the last student admitted to a program. The vertical axes in the first column show
the residualized leave-own-out average entrance exam marks in a program, standardized around the
mean. The vertical axes in the second column show the residualized relative percentile rank of a
student.

Additionally, a student who is barely admitted to a program, occupies a lower percentile rank

in their program relative to the counterfactual student who was not admitted to the preferred

program. As we expect, clearing a cutoff implies a student faces a significant increase in peer

quality of approximately 0.4 s.d. and a decrease in their relative percentile rank of approximately

15 p.p. Table A3 shows the peer quality and relative rank effects experienced by marginally

admitted students.

2.4.2 Academic Outcomes

In Figure 5, we see that, relative to students who just missed a program cutoff, students who are

marginally admitted to their preferred programs perform significantly better on their examinations

in college and are more likely to graduate from their program. These results suggest that, on

average, going to your desired college, over the next best available option leads to higher marks
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Figure 5: Academic Outcomes. The horizontal axis shows the running variable Xij which
denotes the distance between a student’s marks on the entrance exam and the marks of the last
student admitted to a program. The vertical axes in the first column show the residualized total
marks scored by a student while enrolled in a program, standardized around the mean. The vertical
axes in the second column show the residualized probability of graduating from a program.

and graduation probability. This may not necessarily be what one would have expected if the

high-ability students were simply selecting into the most desirable colleges. Yet, these average

aggregate effects hide meaningful heterogeneity. We show below, that even though the average

“value added” is positive, there are a large number of (even top-ranked programs) with negative

“value added”. Table A4 shows the RD coefficients for academic outcomes as well as tests the

robustness of these estimates to different bandwidths.

3 Model: Conceptual Framework

Thus far, using an RD approach and comparing students with similar abilities, we have illustrated

the aggregate impact of gaining admission into a preferred program. Students who clear an admis-

sions cutoff are exposed to a higher peer quality and are at a lower relative percentile rank in the

classroom they are admitted to. Additionally, these students experience a gain in their academic

outcomes as they score higher marks in the college semester examinations, and are more likely to
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graduate, relative to their counterparts who barely missed an admissions cutoff for a given program.

Going forward, our objective is to estimate the “value-added” for each individual program and

separately identify the contribution of relative rank effects, college inputs, and peer quality in

order to understand how each of these components contributes to an overall measure of program

value-added. Equation 1 denotes the outcome of a student i admitted to program j. We assume

that yij is an additive separable function of college inputs Qj, peer quality PQj, relative percentile

rank of a student in a program RRij, their ability Ai and idiosyncratic variation ϵij.

yij = γCQj︸ ︷︷ ︸
college inputs

+ γPQPQj︸ ︷︷ ︸
peer quality

+ γRRRRij︸ ︷︷ ︸
relative rank

+ Ai︸︷︷︸
ability

+ ϵij︸︷︷︸
unobservables

(1)

• Step 0: Using an RD design to compare students who fall on either side of an admissions

cutoff, we control for ability Ai while estimating program value-added. The underlying RD

design assumption is that Ai varies smoothly across the admissions cutoff.

• Step 1: Estimate the program specific LATE value added, γj, upon admission into a “pre-

ferred” program j

γj = yij − y¬i¬j

= γC∆college inputs + γPQ∆peer quality + γRR∆relative rank

Here, the ∆ terms represent changes in college inputs, peer quality, and relative rank for the

marginally admitted student as a result of clearing the admissions cutoff.

• Step 2: Separately estimate the relative rank effect for each program, γRR
j , with multiple

cutoffs

γj = γC∆college inputs + γPQ∆peer quality︸ ︷︷ ︸
γQ
j

+ γRR∆relative rank︸ ︷︷ ︸
γRR
j

(2)

We are able to leverage the fact that there are multiple admissions cutoffs created by affir-

mative action policies, to separately identify γRR. Consider a program j with two admission

cutoffs, one for the students targeted by affirmative action (AA) policies and another for

students getting admitted under open competition (OC). For the purpose of exposition, we

refer to programs with lower cutoffs than program j as ¬j. Let yOC
ij and yOC

¬i¬jOC respectively

represent the outcomes for students who clear and miss the OC cutoff for program j. The

terms yAA
ij and yAA

¬i¬jAA are defined similarly.
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The expected payoff to clearing an OC cutoff is

∆yOC
j = yOC

ij − yOC
¬i¬jOC

= γC(Qj −Q¬jOC ) + γPQ(PQj − PQ¬jOC ) + γRR(RROC
ij −RROC

¬i¬jOC )

The expected payoff to clearing an AA cutoff is

∆yAA
j = yAA

ij − yAA
¬i¬jAA

= γC(Qj −Q¬jAA) + γPQ(PQj − PQ¬jAA) + γRR(RRAA
ij −RRAA

¬i¬jAA)

Now consider the following second difference:

∆2yj = ∆yOC
j −∆yAA

j

= γC [(Qj −Q¬jOC )− (Qj −Q¬jAA)]

+ γPQ[(PQj − PQ¬jOC )− (PQj − PQ¬jAA)]

+ γRR[(RROC
ij −RROC

¬i¬jOC )− (RRAA
ij −RRAA

¬i¬jAA)]

We make the following assumptions,

1. A1: Q¬jOC = Q¬jAA

A1 posits that the program quality (e.g., from inputs) experienced by OC and AA

“cutoff-missers” is the same. This will hold true if OC and AA students have similar

underlying preferences for programs and, therefore, are exposed to similar program

quality when they miss a cutoff. This assumption can be tested using college input

data.

2. A2: PQ¬jOC = PQ¬jAA

A2 posits that the peer quality experienced by OC and AA “cutoff-missers” is the same.

This assumption is directly testable from the data and holds in practice.

Using A1 and A2, we isolate the parameter of interest, γRR as follows:

∆2yj = 0 + 0 + γRR
[
(RROC

ij −RROC
¬i¬jOC )︸ ︷︷ ︸

∆RROC

− (RRAA
ij −RROC

¬i¬jAA︸ ︷︷ ︸
∆RRAA

)
]

(3)

The LHS of equation 3 can be obtained by computing the difference between the program

value-added for students admitted to program j through OC and AA cutoffs. Similarly, the

RHS of equation 3 can be obtained by computing the difference between the relative rank

effects for students admitted to program j through OC and AA cutoffs.5 Thereafter we

5Heterogeneous cutoff-specific program VA and relative rank effects are visible in Figure 10.

13



Measuring College Quality and its Determinants

isolate γRR by simply rearranging terms. We can then compute γRR
j as defined in equation

2.

• Step 3: Rearranging the terms in equation 2, we can isolate the joint contribution of college

inputs and peer quality γQ
j to program VA according to the equation

γQ
j︸︷︷︸

Quality VA

:= γj︸︷︷︸
Program RD VAM

− γRR
j︸︷︷︸

Relative Rank VA

• Step 4: Regress γQ
j on all available college inputs and peer quality within each classroom.

This allows us to decompose γQ
j into peer quality effects, and the impacts of more college

inputs.

4 Estimating Program Level Value-Added: γj

In this section, we compute program-level value-added measures (VAM) using an RD approach

and compare these RD VAM to traditionally computed OLS VAM (Chetty et al., 2014).

4.1 RD Estimation of Program Value Added

The regression specification for estimating individual RD program value added is as follows.

yij = αj +
J∑

l=1

βD
l ×Dij × 1[l = j] + βXXij + βDXDijXij + ϵij

Figure 6 plots the distribution of βD
j , i.e. the RD VAM (estimated with and without caste fixed

effects) for each program individually. Note that the distribution of RD VAMs does not change

drastically upon including caste fixed effects. The modal value added is around 0, and the average

is positive because certain colleges have a very high value-added measure.

4.2 Comparing OLS and RD VAM Distributions

Table 1 compares the regression specifications used to compute OLS and RD value added mea-

sures. We include student caste fixed effects for the OLS regression in order to control for demo-

graphic characteristics of students. Our approach here is guided by the literature on estimating

value-added (Chetty et al. 2014; Koedel and Rockoff 2015). Therefore our preferred OLS VAM

specification includes caste fixed effects and our preferred RD VAM specification does not include

caste fixed effects.
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Figure 6: Distribution of Program RD Value-Added Measures. The horizontal axis shows
the program RD VAM or the change in total marks of marginally admitted students, measured in
standard deviations, relative to students who just missed a program cutoff. The vertical axis shows
the density of the distribution.

Table 1: OLS and RD Specifications

OLS RD
Outcome total exam scores (s.d.) total exam scores (s.d.)
FE actual program, caste program waitlist
Controls high school, EAMCET scores (s.d.) RV, RV interacted with treatment indicator
SE cluster level actual program program waitlist

In Figure 7, we see that the OLS and RD VAM distributions are centered around zero, however

there are some programs that have a very high RD VAM, to the order of ≥ 1.5σ, which extends

the right hand tail of the RD VAM distribution.

4.3 VAM for Most and Least Preferred Programs

Figures 8 and 9 respectively plot the OLS and RD VAM estimates for the top and bottom 25

programs in the system. The programs are chosen based on the highest cutoff marks in that

program. For example, in Figure 8, the program JNKR has the highest cutoff marks, followed

by GNTW and so on. Similarly, in Figure 9, the program SDEW has the lowest cutoff mark.

Owing to the serial dictatorship property of the centralized admissions mechanism, we can infer
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Figure 7: Comparing OLS and RD Program VAM Distribution. The horizontal axis
shows the RD and OLS VAM measures. The vertical axis shows the density of each distribution.

that programs with higher cutoff marks are more preferred by students. In general, we observe

Figure 8: Comparing the Top 25 Programs’ OLS and RD VAM. The horizontal axis shows
the RD and OLS VAM measures. The vertical axis shows the corresponding programs ranked from
best to worst (top to bottom) based on incoming student quality. Black and gray dots represent the
RD and OLS program VAM, respectively.

that OLS and RD VAM estimates differ considerably. In Figure 8 we see that numerous very

desirable programs have a negative RD VAM, but a large positive OLS VAM. On the other hand,
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in Figure 9, we observe that some of the least desirable programs have a high RD VAM relative

to their OLS VAM. Therefore, we can conclude that OLS VAM estimates are often biased by the

quality of the incoming students and may not accurately reflect the value-added by a program

itself.

Figure 9: Comparing the Bottom 25 Programs’ OLS and RD VAM. The horizontal
axis shows the RD and OLS VAM measures. The vertical axis shows the corresponding programs
ranked from best to worst (top to bottom) based on incoming student quality. Black and gray dots
represent the RD and OLS program VAM respectively.

5 Decomposing Program Value-Added

Program VAM (defined as γj in equation 2) measures pick up a combination of three things,

namely college inputs, peer quality, and relative percentile rank. First, college inputs may be

better in top colleges, and inputs may improve test score outcomes. Second, high-ability peers

select into top colleges, and the peer effects may either improve or decrease one’s performance.

Third, students who are marginally admitted to a preferred program experience a significant drop

in their relative percentile rank relative to their counterfactual student who missed an admission

cutoff, but is the best in their admitted classroom. This change in the relative position of a student

can have an impact on their performance in college.

γj = γC [∆college inputs] + γPQ[∆peer quality]︸ ︷︷ ︸
γQ
j

+ γRR[∆relative rank]︸ ︷︷ ︸
γRR
j

(4)
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Consider a program j. Using an RD approach, we have estimated the overall value added by

program j, namely γj. Next, we want to examine the various components that make up this

VA measure. We posit that program VA can be decomposed into the effect of college inputs,

peer quality, and relative rank. ∆college inputs, ∆peer quality, and ∆relative rank represent the

change in college inputs, peer quality, and relative percentile rank experienced by a student who

clears a cutoff and is marginally admitted to program j. Hereafter we will refer to γj as program

RD VA, γQ
j as quality VA, and γRR

j as relative rank VA.

5.1 Heterogeneous Effects by Program-Cutoff Type

In Section 3, we developed a new method to distinguish the relative rank VA γRR
j from the overall

program VA, γj. The advantage of our setting is that we have multiple cutoffs within a program,

owing to affirmative action rules that are uniform across all programs. This enables us to estimate

both, RD VAM and the change in relative rank at different points of the score distribution within

a classroom. This unique feature of our setting allows us to separately estimate relative rank VA

γRR
j , unlike what others have been able to estimate in different settings.

Figure 10 plots the cutoff type specific density distributions of program VA and relative rank, i.e.

the left-hand panel corresponds to the distribution of ∆yOC
j and ∆yAA

j and the right-hand panel

corresponds to the distribution of ∆RROC and ∆RRAA as defined in Section 3. We observe that

although the program VA and relative rank effect distributions are similar for students admitted

through OC and AA cutoffs, these distributions are not exactly the same. Therefore, computing

the second differences ∆yOC
j −∆yAA

j and ∆RROC −∆RRAA is plausible, and these differences do

not reduce to zero. The plausibly exogenous variation in these differences enables us to compute

γRR and subsequently the relative rank VA, γRR
j := γRR∆relative rank as outlined in equation 4.

5.2 Components of Program Value-Added

Thus far, we have posited that program RD VA (γj) is made up of three individual components,

namely, college inputs, peer quality, and relative rank. The first two are jointly called quality

VA (γQ
j ), and we have separately computed the third component, relative rank VA (γRR

j ), by

leveraging the uniqueness of our setting. Figure 11 shows the density distributions of program

RD VA, relative rank VA, and quality VA. We can see that program RD VA is made up of two

potentially opposing effects as one might theorize. The modal value of the relative rank VA

distribution is negative, suggesting that, on average, the marginally admitted student experiences

a negative effect from being the “lowest scoring” student relative to their peers. On the other

hand, the quality VA distribution has a positive modal value, suggesting that once the relative

rank VA effects are separated from overall program VA, college inputs and exposure to a higher
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Figure 10: Distribution of Program-Cutoff Type RD VAM and Relative Rank Effects.
The left-hand panel shows the distributions of ∆yOC

j and ∆yAA
j in orange and blue, respectively.

The horizontal axis shows the VA measured in standard deviations. The right-hand panel shows the
distribution of ∆RROC and ∆RRAA in orange and blue, respectively. The horizontal axis shows
the change in relative percentile rank upon admission to a preferred program. The vertical axes in
both panels show the density of each distribution.

peer quality have a positive effect on the marginally admitted student. I.e., rearranging the terms

in equation 4, we isolate quality VA γQ
j that can be regressed on a combination of college inputs

and peer quality to quantify the unexplained variation in program VA owing to factors other than

the relative rank VA.

γQ
j︸︷︷︸

Quality VA

:= γj︸︷︷︸
Program RD VAM

− γRR
j︸︷︷︸

Relative Rank VA

6 Conclusion

In this paper, our primary objectives are (i) to compute a metric of education quality, namely

program (college + major combination) value-added, and (ii) to decompose this metric into the

effects of college inputs, peer quality, and relative rank. In our setting, students give a com-

mon state-level entrance examination, receive their scores, and submit their rank-ordered list of

program preferences. Students and programs are matched using a candidate proposing Deferred

Acceptance Mechanism, with serial dictatorship, that incentivizes truth telling. This generates

admission cutoffs for each program. Using a regression discontinuity approach we compare stu-

dents with entrance exam scores in the neighborhood of these admission cutoffs to estimate the
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Figure 11: Decomposing Program RD VAM. The horizontal axis shows the VA in standard
deviations. The vertical axis shows the density of each distribution. The densities of program VA
γj, relative rank VA γRR

j , and quality VA γQ
j are represented by the dashed, dotted, and solid lines,

respectively.

effect of admission into a preferred program while controlling for students’ academic ability at the

time of admission. On average, we find that being marginally admitted to a preferred program

exposes students to a higher quality of peers and causes a decrease in the relative percentile rank

in their classroom. Moreover, we also find that gaining admission into a preferred classroom has

a positive effect on the academic achievement of students as measured by their total marks in

college, the number of times they fail, and their probability of graduation.

Since all colleges in our setting administer the same semester exams within a program, we are

able to use the academic achievement of students to develop a program value-added metric for

individual programs in this setting. Thereafter we posit that these program value-added metrics

are composed of college inputs, peer quality, and relative rank effects. By leveraging the fact

that affirmative action policies result in multiple cutoffs within a single classroom, we are able

to separately identify the contribution of relative rank to the overall program value-added. We

will now proceed to regress the residual value-added that comes from factors other than relative

rank on college inputs and peer quality changes that students experience upon being admitted to

a preferred program.
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This paper makes two important contributions to the literature. First, we develop and estimate

an education quality metric in one of the largest higher education markets in India. Our method

can be applied to higher education settings across the world which follow centralized admissions

processes. Second, to our knowledge, this is the first paper that separately estimates the contribu-

tion of relative rank effects to overall program value-added. This will enable administrators and

policymakers to understand the actual impact that various college inputs and peer quality have

on program value-added as they make important allocation and investment decisions.
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Appendix

Table A1: First Stage - Probability of Enrollment: ±10 bandwidth

P(Enrollment = 1)

1{Xijk ≥ 0} 0.878∗∗∗

(0.009)

Observations 16,384
R2 0.721
Adjusted R2 0.721

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A1 shows the probability that a student enrolls in their allotted program. We see that

approximately 88% of students “take-up” their admission offer and choose to enroll in their allotted

program.

Table A2: Covariate Balance at Cutoffs: ±10 bandwidth

12th Marks Student Age Out-of-pocket Expense

(marks) (years) (Rupees)

1{Xijk ≥ 0} 0.214 −0.010 774.200
(0.209) (0.017) (1, 183.414)

Observations 16,384 16,384 16,384
R2 0.208 0.002 0.018
Adjusted R2 0.208 0.002 0.018

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A2 shows the balance in covariates in the neighborhood of admissions cutoffs. I.e., for the

RD design to be a valid identification strategy, we require that students to the left and right of

each admission cutoff are comparable. We see that this assumption holds up since students have

similar ability as measured by their high school graduation scores, are of a similar age, and pay a

similar amount of tuition fee out-of-pocket, regardless of which side of the admissions cutoff they

occupy. The RD coefficients obtained from regressing the covariates on an indicator for admission

are not significantly different from zero.

Table A3 shows the changes in peer quality and relative percentile rank experienced by marginally

admitted students relative to the students who barely miss the admissions cutoff for a program.
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Table A3: Peer Quality and Relative Percentile Rank: ±10 bandwidth

Peer Quality Relative Rank

All Affiliated All Affiliated

(s.d.) (s.d.) (p.p.) (p.p.)

1{Xijk ≥ 0} 0.317∗∗∗ 0.395∗∗∗ −15.649∗∗∗ −15.102∗∗∗

(0.023) (0.027) (1.094) (1.144)

Observations 16,383 13,816 16,383 13,816
R2 0.528 0.557 0.075 0.080
Adjusted R2 0.528 0.556 0.075 0.080

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Columns titled “All” and “Affiliated” respectively refer to all programs that are part of the central-

ized admissions mechanism and the 80% of programs that are affiliated with the state’s technical

university. Since we have semester examination (outcome) data only for the latter sub-sample of

programs, we show that changes in peer quality and relative rank are consistent in both groups of

programs. Marginally admitted students experience an increase in peer quality (0.32 - 0.4 σ) and

a decrease in their relative percentile rank of a little over 15 p.p.

Table A4 shows the changes in academic outcomes for marginally admitted students relative to

the students who barely miss the admissions cutoff for a program. We see that students see a

significant improvement in their total semester examination scores (approximately 0.12 σ) across

all semesters as well as their scores on exams each year they are in college. Marginally admitted

students also have a significantly higher probability of graduating from their program. These

results are fairly robust across different bandwidths around a program’s admissions cutoff.
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Table A4: Academic Outcomes

Total Marks P(Graduation=1) Yr 2 Marks Yr 3 Marks Yr 4 Marks

(s.d.) (s.d.) (s.d.) (s.d.)

Panel A: ±6 bandwidth

1{Xijk ≥ 0} 0.117∗∗ 0.033∗ 0.093 0.118∗∗ 0.121∗∗

(0.060) (0.018) (0.059) (0.056) (0.058)

Observations 4,033 4,033 4,033 4,033 4,033
R2 0.137 0.066 0.136 0.113 0.104
Adjusted R2 0.121 0.048 0.120 0.096 0.087

Panel B: ±10 preferred bandwidth

1{Xijk ≥ 0} 0.114∗∗ 0.034∗∗ 0.087∗ 0.123∗∗∗ 0.113∗∗

(0.046) (0.015) (0.045) (0.043) (0.045)

Observations 5,166 5,166 5,166 5,166 5,166
R2 0.141 0.063 0.138 0.114 0.105
Adjusted R2 0.127 0.048 0.124 0.100 0.091

Panel C: ±14 bandwidth

1{Xijk ≥ 0} 0.108∗∗ 0.028∗∗ 0.081∗ 0.116∗∗∗ 0.096∗∗

(0.044) (0.013) (0.044) (0.043) (0.042)

Observations 5,592 5,592 5,592 5,592 5,592
R2 0.146 0.065 0.144 0.117 0.109
Adjusted R2 0.134 0.052 0.132 0.104 0.096

Panel D: ±18 bandwidth

1{Xijk ≥ 0} 0.119∗∗∗ 0.030∗∗ 0.096∗∗ 0.123∗∗∗ 0.107∗∗∗

(0.040) (0.013) (0.039) (0.040) (0.040)

Observations 5,773 5,773 5,773 5,773 5,773
R2 0.148 0.065 0.145 0.118 0.109
Adjusted R2 0.136 0.052 0.133 0.106 0.097

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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