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1 Introduction1

Bayesian data analysis (BDA) is a method for building statistical models to describe data. Researchers begin2

with explicit assumptions about the data generating process based on past research and the scientific nature3

of the problem. Based on these beliefs and assumptions, they then collect data from designed experiments or4

observational studies. Using Bayes’ rule they combine their assumptions or prior information with the actual5

data into a comprehensive probability model. This model contains information about all known (observed6

data) and unknown (unobserved parameters) quantities related to the data generating process. Bayesian7

data analysis is gaining popularity in medical, pharmaceutical, and social-science research because it allows8

researchers to combine prior information with data to model data generating processes.9

The purpose of this paper is to motivate the use of BDA in applied research, especially for analyzing results10

of Randomized Controlled Trials (RCT). The standard models for analyzing RCTs are regression models11

because they allow researchers to estimate causal effects precisely by controlling for available pre-treatment12

covariates (Gelman & Hill, 2006). The Bayesian approach to regression modeling allows researchers to build13

statistical models which include relevant prior information, to estimate varying treatment effects for sub-14

groups of the population, and to model the uncertainty in their estimates explicitly. These improvements15

in the analysis of treatment effects make Bayesian methods especially valuable for empirical researchers in16

psychiatry and clinical psychology. In this paper, we use data from a recently published RCT by Hildebrandt17

et al. (2017) examining the efficacy of a smartphone application designed to augment the efficacy of cognitive18

behavioral therapy guided self-help (CBT-GSH) treatment for reducing binge-eating episodes.19

This paper is an introduction to the Bayesian approach to analyze RCT data. We focus on providing mo-20

tivation for the usefulness of the approach and guidelines for executing it in a rigorous way, particularly in21

the context of treating eating disorders. We model data used by Hildebrandt et al. (2017) using a multi-22

level/hierarchical Poisson model (explained in Results section). We use a discrete distribution (Poisson) to23

account for the non-negative and discrete outcome variable (OBE), that contains a large number of 0’s. The24

innovation in using the Bayesian approach is that we are able to control for pre-treatment covariates while25

capturing heterogeneity in treatment effects across individuals and over time and explicitly modeling the26

uncertainty around those effects. We find that we are able to capture the pattern of excess 0’s and positive27

skew in the data and our model predicts the data well.28

29
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2 Methods1

2.1 Bayesian Data Analysis2

There are three main steps to BDA which are listed below and explained in detail in the subsequent sections:3

1. Specify a model based on scientific knowledge of the data generating process.4

2. Estimate model parameters based on observed data.5

3. Evaluate the model’s accuracy and expand or alter the model.6

2.2 Probability notation and Bayes’ rule7

In Bayesian Data Analysis, assumptions are specified mathematically as prior distributions. Data are rep-

resented through a likelihood model. Bayes’ Rule combines prior distribution and data likelihood into a

posterior distribution. A formal expression of the Bayes’ Rule is as follows;

p(θ|y, x) =
p(θ)p(y|θ, x)

p(y)
(1)

θ is the estimated parameter. In the context of an RCT, θ is the effect of the treatment x on dependent

variable y. p(θ) is the prior distribution of the treatment effect, which captures the researcher’s beliefs about

the model parameter prior to any analysis. p(y|θ, x) is the likelihood function and is the probability of the

observed data given the parameter. p(y) is a normalizing constant with respect to θ that ensures the left

hand side p(θ|y, x) is a proper probability distribution that integrates to 1. For a full treatment of proper

distributions and normalizing constants see Gelman et al. (2014).

For our purpose, we can ignore this denominator and rewrite the expression for the posterior p(θ|y) as;

p(θ|y, x) ∝ p(θ)p(y|θ, x) (2)

The posterior distribution is proportional to the product of the prior and the likelihood. Ultimately the8

goal of modeling is to learn the posterior distribution p(θ|y, x) and summarize it accurately (Gelman et al.,9

2014). Based on this we can make inferences and predictions.10

Model development11

Model development involves specifying a model that accounts for all observed data and unobserved param-12

eters. The model should include all knowledge of the experiment or data collection process and should be13

logically consistent with scientific nature of the problem. We approach model development in three steps.14
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2.3 Exploratory data analysis1

Summarizing data through visualizations and summary statistics is a critical model building step. We look2

at summary statistics of our relevant variables to understand their distributions. We explore data through3

univariate analyses, such as histograms to visualize distributions, and bivariate analyses, such as scatter4

plots to see if there are meaningful linear or non linear relationships. This exploratory process informs us of5

the distribution of individual variables, their correlations, and other relevant information for modeling.6

Exploratory analysis helps us to choose an appropriate likelihood model to describe the data. For example,7

if our variables are normally distributed and linearly correlated, we might choose a linear regression model.8

If the relationship between variables is not straightforward we might choose more complicated models. It9

allows researchers to explore and solidify intuition about the problem at hand and the nature of the data.10

An introductory treatment of exploratory data analysis can be found in Tukey (1977). A more advanced11

explanation of exploratory data analysis in the context of Bayesian statistics is available in Gabry, Simpson,12

Vehtari, Betancourt, and Gelman (2017) and Betancourt (2018).13

2.3.1 Setting up a likelihood model14

The likelihood function is often analogous to a traditional regression equation. The researcher must select15

independent variables that represent important determinants of the outcome variable. The likelihood rep-16

resents the distribution of the outcome variable given the independent variables and model parameters. To17

choose the right likelihood function, it is critical to know the type of data. Data can be binary, categorical,18

ordinal, count, or continuous and each of these types of data require a different kind of model. In the example19

in this paper, the outcome variable is non-negative and discrete so we choose a Poisson likelihood function20

(see Results section).21

2.3.2 Choosing a prior distribution22

The prior distribution is a mathematical encoding of researchers’ assumptions. A prior distribution serves23

three functions. First, it makes assumptions about the underlying scientific nature of the problem explicit.24

Second, it regularizes or constrains the parameter space by specifying likely ranges for parameter values.25

Third, it facilitates the calculation of a posterior distribution and makes it possible to generate simulations26

from that distribution.27

Prior choice depends on the parameter or coefficient of interest. We could assign a completely “noninfor-28

mative” or flat prior to our coefficient by specifying a uniform distribution as the prior. This is equivalent29

to saying that our parameter is equally likely to assume any value from negative infinity to positive infinity30
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and we have no more information about it. Using a noninformative uniform prior is the same as carrying1

out a maximum likelihood estimation of the parameter of interest.2

Researchers rarely know nothing about the problem or relevant parameters. They often possess valuable3

information about the parameter which statisticians can incorporate as informative prior information. For4

instance, if a coefficient of interest is a proportion, then it must be between 0 and 1, and we can assign5

a Beta prior to that coefficient. If we believe that a coefficient is close to zero, but may be positive or6

negative, we could assign an informative Normal(0, 1) prior distribution to it. More information about prior7

choice for the same can be found on the GitHub page for Stan developers (Stan Development Team, 2015).8

Some plots displaying common priors can be found in the Appendix. We explain the Bayesian probabilistic9

programming language, Stan, in model estimation.10

2.4 Model estimation11

Once the likelihood model and prior distribution are specified, the posterior distribution of an outcome12

variable can be estimated. As discussed earlier, the posterior distribution is obtained by multiplying the prior13

and likelihood. The distribution obtained by this process is proportional to the true posterior because we can14

ignore the normalizing constant (the denominator in equation 1). We use an approximation of the posterior15

as shown in equation 2 because calculating the true posterior analytically may be practically impossible.16

A standard practice is to use Markov Chain Monte Carlo (MCMC) sampling methods to approximate17

the posterior up to a normalizing constant and sample from it (Gelman et al., 2014). There are other18

approaches to calculating the posterior distribution, but those are beyond the scope of this paper. Analyses19

in this paper are carried out with the Bayesian probabilistic modeling language Stan. The R interface of20

the language can be understood at Stan Development Team (2018) and Carpenter et al. (2017) present a21

clear conceptual overview of the language. Stan uses a Hamiltonian Monte Carlo sampling algorithm (from22

a broader class of MCMC sampling methods) to approximate the posterior distribution. Betancourt (2017)23

has a clear exposition of how the algorithm works. Stan returns the full posterior distribution of the desired24

parameters. Stan can also predict values based on the specified model which can be used for model checking,25

validation, and expansion.26

2.5 Model checking and expansion27

We evaluate whether our model explains the data by investigating parameter distributions and posterior28

predictive checking. Visualizations of parameter distributions, such as histograms, enable us to summarize29

estimates and the uncertainty around them. Posterior predictive checks involve “simulating replicated data30
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under the fitted model and then comparing these to the observed data” (Gelman & Hill, 2006, p. 158).1

While we may not expect our model to generate our data exactly, it should recover important patterns.2

Once we have estimated a model and studied its properties, we can expand it through reparameterizations,3

adding parameters, or changing prior distributions.4

After we have fit multiple models, we may want to compare their performances. There is wide literature5

on the most effective ways to compare and assess Bayesian models. These include cross validation methods,6

Bayes factors, and information criterion. One popular Bayesian approach to model checking, is leave-one-7

out-cross validation (loo-cv). The process compares models by fitting them on all data points except one,8

then evaluating how they predict the remaining data point. This process is repeated until all data points9

have been left out once. There are also several information criterion that can be used. An exhaustive10

summary of these “practical” model checking methods can be found in Vehtari, Gelman, and Gabry (2017).11

Some model checking methods that are closer to the null-hypothesis significance testing (NHST) framework12

are the ROPE (region of practical equivalence)(Kruschke, 2014) and Bayes factor (Rouder, Speckman, Sun,13

Morey, & Iverson, 2009) approaches.14

Model checking is a critical step in Bayesian Data Analysis; however, there is no one-size-fits-all approach.15

We recommend posterior predictive checks because it is a direct way to assess the model fit to various aspects16

of data. By using posterior predictive checks we neither “accept” nor “reject” models but aim to understand17

their limitations in realistic replications (Gelman et al., 2014).18

2.6 Experiment: Impact of Smartphone App on Eating Disorder Behavior19

Hildebrandt et al. (2017) conducted an experiment to test whether the Noom Monitor, a smartphone applica-20

tion, could augment the effect of in-person therapeutic treatment on binge-eating behavior. The treatment,21

known as guided self-help treatments based on cognitive-behavior therapy (CBT-GSH), had been shown in22

previous research to reduce binge-eating behavior by 10-50%. The Noom Monitor application was designed23

to facilitate CBT-GSH. For this example, we consider two research questions from the experiment:24

1. Is CBT-GSH more effective at reducing binge-eating behavior when facilitated by the Noom Monitor?25

2. Does the effect of the Noom Monitor vary over time?26

2.7 Experimental design27

66 men and women with Bulimia Nervosa (BN) or binge-eating Disorder (BED) were randomly assigned into28

two treatment conditions: CBT-GSH (N= 33) or CBT-GSH + Noom (N=33). Therapy lasted for 12 weeks.29

Assessments were conducted at weeks 0, 4, 8, 12, 24, and 36. The primary outcome was Objective Bulimic30
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Episodes (OBE). For more information about the experiment, choice of dependent (outcome) variable, his-1

torical context and past research in this area, see Hildebrandt et al. (2017). There is a discussion of Bulimia2

Nervosa and binge-eating as well as an explanation of the choice of outcome variable OBE. Hereafter we refer3

to CBT-GSH as the control condition/group and CBT-GSH + Noom as the treatment condition/group.4

3 Results5

3.1 Model development6

3.2 Exploratory data analysis7

We start the analysis by plotting the outcome variable OBE. Figure 1 displays OBEs per week for each8

individual in both treatment conditions. A few aspects of the data immediately stand out, which suggest9

that any model should account for individual-level effects and time-level effects, and should let treatment10

effects vary over time.11

1. The number of OBEs decreases over the course of the treatment for almost all subjects.12

2. The biggest decreases in OBEs appear to occur in the early stages of treatment.13

3. The primary sources of variation in OBE appear to be between people and over time.14

8
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Figure 1: This figure shows the OBE measurements for individuals divided into the treatment and control

group. Fig.1 (a) and (b) show the OBE measurements for individuals in the CBT-GSH group and CBT-GSH

+ Noom group respectively. The horizontal axis shows the week and the vertical axis shows the instances of

OBE. The gray dots represent OBE readings over time for each individual.

Figure 2 displays the distribution of OBEs in each condition in each week, aggregating across individuals.1

We notice three characteristics of the data from these histograms.2

1. The distributions appear to condense around zero for both conditions over time3

2. The distributions in the CBT-GSH condition appear to have longer tails than those in the CBT-4

GSH+Noom condition5

3. OBEs are count data; they must be nonnegative integers.6

These three characteristics suggest that the appropriate model for OBEs is the Poisson distribution, because7

it is restricted to nonnegative integers and can concentrate its density around low numbers with a long tail.8
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Figure 2: The histograms display the distribution of OBEs in the control and treatment condition in each

stage of the treatment. The orange and light blue histograms show the distribution of OBEs for the CBT-GSH

and CBT-GSH + Noom group respectively.

3.3 Setting up a likelihood1

We analyze RCTs by modeling the outcome of interest (in this case OBE) as a function of the treatment and2

all available pre-treatment covariates. The coefficients associated with the treatment are estimates of average3

treatment effects. Inclusion of all available pre-treatment covariates accounts for variation in the outcome4

variable, decreasing uncertainly around treatment effects and providing the model with more predictive5

power. We conduct intent-to-treat analysis, meaning that our inferences will be based on initial treatment6
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assignment, and will not account for mid-experiment dropouts.1

The outcome variable is restricted to be nonnegative integers, so we fit a Poisson regression model, partially2

pooling across individuals, time periods, and treatment effects. For each individual in each time period,3

the number of OBEs follows a Poisson distribution, with a mean dependent on the characteristics of the4

individual and the time period.5

An important implication of our likelihood function is that unlike previous zero-inflated Poisson (ZIP) and6

zero-inflated negative binomial models (Grotzinger, Hildebrandt, & Yu, 2015; Hildebrandt et al., 2017) for7

binge-eating data, we have a single generative process. We do not have a different generative process for 0’s8

from abstinence, full remission and the non-0 count data. By accounting for individual level variation across9

time, in other words partially pooling (Gelman et al., 2014) across individuals and time periods, we are able10

to capture each individual’s behavior and model their associated OBEs across time.11

OBEi,t ∼ Poisson(λi,t) (3)

λi,t = exp(αi + βt + γtTi +Xiθ) (4)

Ti =


0, if CBT −GSH

1, if CBT −GSH +Noom

(5)

α is an individual-specific intercept, β is a time-specific intercept, γ is a time-specific treatment effect, T is12

a treatment indicator, X is a matrix of individual level covariates (age, sex, race, etc), and θ is a vector of13

effects. Subscripts i = 1, ..., 66 indicate individuals and subscripts t = 0, 4, 8, 12, 24, 36 indicate time periods.14

We validate the effectiveness of our probability model using posterior predictive checks (Fig.5). We are able15

to capture the trend of inflated zeros for all time periods for both groups of individuals (treatment and16

control). Our model learns and reproduces the positive skewness and long tails of the OBE distribution.17

3.4 Choosing a prior distribution18

Table 1 has a list of different sources from which prior information has been obtained for this experiment. It19

aims to summarize the various methods which a researcher can use to incorporate prior information into the20

modeling process. There is a rich literature on binge-eating disorders and bulimia nervosa studies, implying21

a large amount of prior information. This makes analysis of similar RCTs amenable to Bayesian methods.22

For more examples of priors see the Appendix or check the “Prior Choice Recommendations” GitHub page23

(Stan Development Team, 2015).24
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Source of Prior Information

Experimental Design Outcome variable is nonnegative integers

Literature Treatment effect size is small

A large number of zeros in OBE data due to remission

Exploratory Data Analysis There is variation in OBEs at the individual level

There is variation in OBEs over time

Treatment effects may vary over time

Table 1: Sources of prior information.

We believe that individual-level intercepts are simultaneously unique to the individual and common to the

population; that is, each individual has their own baseline predilection to engage in eating disorder behavior,

but those baseline predilections are not drastically different from each other. We operationalize this concept

by modeling all individual-level intercepts as coming from a common distribution, with hyperparameters µα

and τα. In Bayesian statistics, hyperparameters are parameters of prior distributions. In hierarchical models,

we model hyperparameters explicitly.

αi ∼ Normal(µα, τα) ∀ i ∈ 1, ..., 66 (6)

Similarly, we believe that time-specific treatment effects may be unique to each period but similar over time.

We operationalize this concept by modeling all time-specific treatment effects γ as coming from a common

distribution, with hyperparameters µγ and τγ .

γt ∼ Normal(µγ , τγ) ∀ t ∈ 0, 4, 8, 12, 24, 36 (7)

µγ is the grand mean, the overall treatment effect; τγ is the variation in treatment effects over time; and

each individual γt is a time-period specific treatment effect. This approach has a natural smoothing effect:

any extreme estimates of γt will be partially-pooled back toward the grand mean µγ .

We assign the following prior and hyperprior distributions:

µα ∼ Normal(5, 5) (8)

τα ∼ Cauchy+(0, 30) (9)

µγ ∼ Normal(0, 5) (10)

τγ ∼ Cauchy+(0, 30) (11)

θ ∼ Normal(0, 1) (12)

The normal distributions around the individual and treatment effects allow us to guide the model to the1

appropriate range of parameter values, but with wide enough variance (5 in each case) to let the model2
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find its own way in that range. Half-Cauchy priors on the variance parameters are weakly informative, with1

much of their mass around zero but gentle slopes in their tails, which have been shown to be effective prior2

distributions for variance parameters (Gelman, 2006).3

3.5 Model estimation and results4

We estimate this model with Hamiltonian Monte-Carlo in Stan. Model code is appended to this document.5

This is a particular algorithm from a larger class of Markov Chain Monte Carlo algorithms, for more examples6

see Gelman et al. (2014).7

Model results are displayed in Table 2. The table displays the mean of each of the parameter distributions8

along with the 50% posterior interval. Results suggest that using the Noom Monitor smartphone application9

during CBT-GSH may slightly decrease OBEs. There is evidence that the treatment effect varies over time,10

with the Noom effect being slightly more pronounced during stages 4, 8, 12 and 24 of therapy but decreasing11

by week 36.12

mean 25% 50% 75%

γ0 0.18 -0.45 0.15 0.78

γ4 -0.43 -1.05 -0.46 0.16

γ8 -0.70 -1.33 -0.71 -0.10

γ12 -0.65 -1.28 -0.68 -0.04

γ24 -0.72 -1.34 -0.75 -0.11

γ36 0.21 -0.42 0.19 0.82

µγ -0.34 -0.98 -0.36 0.26

τγ 0.64 0.43 0.56 0.77

Table 2: Table displays model results for Noom effects in all six time periods and grand mean and variance

parameters.

3.6 Model checking, comparison, and expansion13

Before using our model to make inferences about time-specific treatment effects, we check its fit by comparing14

model-simulated OBE to data OBE. If model simulations do not track the data well, we may want to revisit15

our model’s assumptions before trusting its inferences. If the model’s simulations recover patterns in the16

data, we are more inclined to trust it.17

Figure 3 displays OBEs in each period for each individual in each treatment group, from raw data (upper18
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plots) and model simulations (lower plots). Black lines display means for each period. This suggests that1

the model is able to pick up on the key variables that determine OBE over time for the duration of this2

experiment.3

Figure 3: This figure compares the original data in gray to data simulated from the model in black for the

control and treatment condition. Fig.3 (a) and (b) in the upper row show OBEs in each period for each

individual in CBT - GSH and CBT-GSH + Noom respectively. Black dots represent mean estimate for each

period. Fig.3 (c) and (d) in the lower row show the simulated OBEs for each individual in CBT - GSH and

CBT-GSH + Noom respectively. Black dots represent means from the simulated data for each period. The

horizontal axis shows the week and the vertical axis shows the instances of OBE.

Another way to check the fit of the model is by comparing simulated data directly against the raw data.4

This is called posterior predictive checking and is our preferred form of model checking. Figure 4 shows this5

for both treatment conditions. Simulated data for the Noom condition appear to better track the raw data6

than simulated data for the no Noom condition. This is unsurprising, since the no Noom condition tended7

to have more outliers, which we would not expect (or want) our model to pick up perfectly from such a small8
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sample. If our model worked “perfectly” all the points would cluster along the sloping 45 degree line.1

Figure 4: This figure shows the posterior predictive checks by examining how well the model is able to predict

the data. Fig. 4(a) and (b) show the predicted OBE vs. the actual OBE data for CBT - GSH and CBT-

GSH + Noom respectively. The horizontal axis shows the simulated OBE and the vertical axis shows the

actual OBE. The black dots are the points that represent this and the lines around them show 50% intervals

around the predictions. The upward sloping line is the 45 degree line.

We compare the distributions of OBE for each condition in each time period by plotting density curves over2

the histograms in figure 2, displayed in figure 5. Figure 5 shows that our model is able to broadly pick up3

on the patterns in the data over time and between treatment conditions. We see that the density curves4

clearly peak at lower values close to zero and have long tails, correctly capturing the pattern in the OBE5

data. We recover the pattern of excess zeros and the skewness of the data as well as the long tails of the6

OBE distribution in each time period.7
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Figure 5: This figure shows the density distribution of the predicted values overlayed on the histograms from

figure 2. The histograms display the distribution of OBEs in each condition in each stage of the treatment.

The orange and light blue histograms show the distribution of OBEs for the CBT-GSH and CBT-GSH

+ Noom group respectively. The red and blue lines show the predicted density curves obtained from the

simulations.

Figure 6 displays the simulated OBE for both treatment groups (upper plot) and smoothed treatment effects1

(lower plot). In each measurement period, simulated OBE are higher for the CBT - GSH condition than2

for the CBT - GSH + Noom condition, with some of the difference likely attributable to use of the Noom3

Monitor smartphone app. This shows that the app has an effect on lowering episodes of binge-eating.4

16
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Figure 6: This figure summarizes the treatment effects and the OBE patterns across the time period under

consideration. Fig. 6(a) the upper plot shows the simulated OBE in each time period. The CBT - GSH

condition is in orange and the CBT - GSH + Noom condition is in orange. The bars around each point show

the 95% interval. Fig. 6(b) the lower plot shows the treatment effect for each period with the bars showing

the 50% interval. The horizontal axis shows the time period and the vertical axis for Fig.6 (a) shows the

instances of OBE and for Fig.6 (b) shows the treatment effect of the Noom app.

4 Discussion1

In this section we discuss some of the major benefits of using a Bayesian approach to the analysis of Ran-2

domized Controlled Trials.3

4.1 Heterogenous Treatment Effects4

Among the advantages of Bayesian modeling is its ability to capture heterogeneous treatment effects. For5

example in our study, we control for variation in demographic variables and variation in the treatment6

across the time. This approach is commonly known as a varying slope - varying intercept model (Gelman7

& Hill, 2006). Our approach of hierarchical modeling and partial pooling (Gelman et al., 2014) allows us to8

accomplish this naturally.9

Hierarchical modeling has two closely related meanings (Feller & Gelman, 2015). Hierarchies can explain10
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a hierarchical data structure like spatial or temporal variation. In the RCT we consider in this paper,1

each treatment period is treated as a level and so we obtain different treatment effects for each period.2

Hierarchies also describe how parameters are modeled. We model our treatment effects for each level or3

category in the data, to come from a common underlying prior distribution (Gelman et al., 2014). This is4

the idea of partially pooled estimates of treatment effects. Partial pooling in a Bayesian context is different5

than traditional complete pooling or no pooling approaches.6

In non-Bayesian methods, researchers have two options: complete pooling and no pooling. With complete7

pooling, the categories in data are completely interchangeable, thus ignoring the uniqueness of categories.8

With no pooling, each category is treated as independent from the others, ignoring the interrelatedness of9

each of the categories. For example, if an RCT was conducted in multiple locations by different staff, the10

researcher must assume that the treatments are entirely identical in a complete pooling model, ignoring the11

differences in execution that may have taken place by differing staff. In the no pooling model, the RCT would12

assume that each treatment would be entirely different across locations, despite having close similarities in13

how the treatments were applied. Setting up a prior distribution allows researchers to solve this problem14

by saying that the treatment effects across the locations have a common mean, but vary based on location.15

Thus partial pooling is often a better representation of data as it takes into account both the uniqueness16

and interrelatedness of categories within a hierarchical model.17

4.2 Making uncertainty explicit18

Modeling uncertainty in Bayesian statistics is fundamentally different from other non-Bayesian methods19

(Classical and frequentist statistics). In frequentist statistics, uncertainty in parameter estimates is com-20

monly represented as a 95% confidence interval (CI). Under the assumption of a very large number of21

hypothetical replications of the data, 95% of the estimated parameter values are expected to fall within the22

confidence interval. Additionally the frequentist confidence interval relies on many other assumptions and23

can be misinterpreted (Hoekstra, Morey, Rouder, & Wagenmakers, 2014). In Bayesian statistics, posterior24

distributions of the parameters are derived by multiplying prior and likelihood distributions. Thus these25

parameters have full distributions with probabilistic uncertainty, instead of point estimates with confidence26

intervals. The Bayesian approach does not rely on asymptotics or assumptions about the distribution of27

error terms; it models uncertainty explicitly.28
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5 Conclusion1

Bayesian Data Analysis is a powerful tool for incorporating data and prior information into flexible statistical2

models. It is well-suited to analyze RCTs, where effects are small, prior information is plentiful, and data3

may have hierarchical structures. In this paper, we have explained the steps of Bayesian Data Analysis and4

shown how they can be used to analyze an RCT that evaluates treatments for binge-eating disorder (BED)5

and bulimia nervosa (BN). We argue that Bayesian methodologies are well suited to analyzing RCTs of6

eating disorder behavior because they allow researchers to model uncertainty and heterogeneous treatment7

effects explicitly. We demonstrate our approach by analyzing the impact of a smartphone app on binge-8

eating behavior by fitting a hierarchical Poisson model with individual-level and time-level effects, and9

time-varying treatment effects. These unique representations of assumptions can be useful to empirical10

researchers in general and psychiatrists and clinical psychologists in particular.11
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6 Appendix1

Example priors2

0.0 0.2 0.4 0.6 0.8 1.0

Uniform (0,1)

0.0 0.2 0.4 0.6 0.8 1.0

Beta (2,1)

−100000 0 50000 100000 150000 200000

Cauchy (0,30)

Figure 7: This figure shows some examples of common prior distributions. Fig. 7(a) shows a Uniform (0,1)

distribution. Fig. 7(b) shows a Beta (2,1) distribution. Fig. 7(c) shows a Cauchy distribution, where the

black line shows the positive half and the gray line shows the negative half.

In Figure 7, we show some sample prior distributions. The Uniform (0,1) distribution (Fig. 7(a)) can be3

used when we know the quantity of interest is constrained to be between 0 and 1 but believe that all values4

between 0 and 1 are equally likely. If our quantity of interest is between 0 and 1 but unlikely to take extreme5

values we can use a Beta (2,1) (Fig. 7(b)) prior as shown. Cauchy+(0,30) is the half-Cauchy distribution6

with location 0 and scale 30 (Fig. 7(c)) . This is a good prior for variances because along with restricting7

the distribution to the positive real line it places most of the mass at 0 but allows for long smooth tails that8

the HMC algorithm can explore.9
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